NEW MELAMPOLIDES AND DARUTIGENOL FROM SIGESBECKIA ORIENTALIS

R. N. Barua*, Ram P. Sharma*, Gopalakrishna Thyagarajan*, Werner Herz† and Serengolam V. Govindan†

*Department of Organic Chemistry, Regional Research Laboratory, Jorhat-785006, Assam, India; †Department of Chemistry, The Florida State University, Tallahassee, FL 32306, U.S.A.

(Received 17 May 1979)

Key Word Index—Sigesbeckia orientalis; Compositae; Heliantheae; Melampodiinae; melampolides; sesquiterpene lactones; darutigenol.

Abstract—Isolation and identification of darutigenol and two new melampolides from Sigesbeckia orientalis, in addition to the previously described orientalide and darutoside, are reported.

INTRODUCTION

Isolation of the melampolide orientalide (1a) from the medicinal plant Sigesbeckia orientalis L. has been reported earlier [1]. We now describe isolation of two new melampolides 1b and 4a and the diterpene darutigenol (8a) from the more polar fractions of the extracts, which also contained the known darutoside [3].

RESULTS AND DISCUSSION

The non-crystalline lactone **1b**, $C_{21}H_{24}O_7$ (high resolution MS) had a ¹H NMR spectrum (see Experimental) essentially superimposable on that of acanthospermal A (**1c**) [4] except for the signals of the two ester side chains which were acetate and methacrylate instead of isobutyrate and α -hydroxyisobutyrate. This was corroborated by the MS (see Experimental). Se-

quences C-1 through C-3 and C-5 through C-9 were established by spin decoupling in the manner detailed previously [1, 4] as was the fact that the aldehyde function was conjugated with the 1,10-double bond, the latter being cis (chemical shift of H-14). Identity of the various coupling constants with those of the acanthospermals and orientalide indicated the stereochemistry shown in the formula. Allocation of the methacrylate to C-8 and the acetate to C-9 was based on analogy to 1c and 4a since selective hydrolysis of one of the ester groups could not be affected. Instead, treatment with KOH-MeOH afforded 2a by solvolytic displacement of the ester on C-9 in the manner previously observed with the acanthospermals and 1a, concomitant with hydrolysis of the ester on C-8 and addition of methanol to the conjugated lactone. In 2a attachment of the ring methoxy group to C-9 was verified by acetylation to 2b and oxidation (DMSO-Ac₂O) to 3. In the ¹H NMR spectrum of 3,

1a R = OH, R' =
$$\begin{pmatrix} 0 \\ 10 \\ 9 \\ 10 \\ 10 \end{pmatrix}$$
, R" = Ac

2a R,R' = H

1b R = H, R' = $\begin{pmatrix} 0 \\ 11 \\ 0 \\ 0 \end{pmatrix}$, R" = Ac

2b R = H, R' = Ac

1c R = H, R' = $\begin{pmatrix} 0 \\ 11 \\ 0 \\ 0 \end{pmatrix}$, R" = Ac

2d R = OH, R' = H

324 Short Reports

the signal of the proton under the methoxyl group was a sharp singlet at 3.80 ppm and the signal at 7.01 ppm of the proton β to the aldehyde remained coupled to the protons of a methylene group found at 2.72 and 2.49 ppm. Consequently we can dismiss the possibility considered in our orientalide paper [1] that in this series solvolysis of the group attached to C-9 may be accompanied by allylic rearrangement. The product from methanolysis of 1a is therefore 2c, not 5.

The second lactone 4a, mp 208°, $C_{20}H_{24}O_7$, was an analog of orientalide containing a methoxyl group on C-9 (upfield shift of H-9 from 5.3 to 3.8 ppm). Acetylation gave 4b; hydrolysis with KOH-MeOH yielded 2c identical with material previously [1] obtained by methanolysis of 1a. MnO₂ oxidation of 2c gave the known 6a [1] which was further oxidized (DMSO-Ac₂O) to 6b. The ¹H NMR spectrum of the latter confirmed the location of the methoxyl on C-9 and hence the absence of a rearrangement in the methanolysis of 1a. Exposure of 4a to BF_3 -Ac₂O gave a triacetate which is formulated as the enol acetate 7.

Darutigenol (8a), which has not been isolated previously from S. orientalis [2, 3], was identified through

conversion to the triacetate (8b), tribenzoate (8c) and the aldehyde 9. Its stereochemistry at C-15 has been established recently [5].

EXPERIMENTAL

The extraction of S. orientalis has been described [1]. Since fractions 41-90 of the original chromatogram showed several spots on TLC, they were combined (10.9 g) and rechromatographed over 400 g Si gel, fractions being collected as follows: 1-10 (C₆H₆-EtOAc, 1:4), 11-20 (EtOAc), 21-30 (EtOAc-MeOH, 19:1) and 31-40 (EtOAc-MeOH, 9:1) Fractions 4-12 (2.18 g) contained three substances which were separated by PLC (C₆H₆-EtOAc, 1:2). The least polar substance 1b was a gum (0.55 g) which was not completely pure (vide infra) and had IR bands (CHCl₃) at 2700 (-CHO), 1775 (lactone), 1730 (esters), 1690 (α , β -unsaturated aldehyde), 1650 and 1140 cm⁻¹: UV strong end absorption $(\varepsilon_{230} \ 18\ 600)$. ¹H NMR (270 MHz CDCl₃): δ 9.48 ($J = 2 \ Hz$, H-14), 6.75 (m, H-1), 6.75 (dd, J = 9, 1.5 Hz, H-8), 6.29 and 5.85(d, J = 3 Hz, H-13), 6.04 and 5.60 (br, H-3'), 5.33 (dd,J = 9, 2 Hz, H-9), 5.10 (t, J = 10 Hz, H-6), 4.92 (br, J =10 Hz, H-5), 2.84 and 2.48 (m, H-2), 2.65 (m, H-7), 2.04 (br,

Short Reports 325

H-15), 1.94 (Ac) and 1.92 (br, H-4'). The signals of H-3 were submerged near 1.95 ppm. Additional weak signals indicated the presence of an impurity which could not be removed by PLC. The low resolution MS exhibited significant peaks at m/e 388 (M⁺), 328 (M-HOAc), 31 (M-C₄H₅O), 277 (M⁺-C₄H₅O-C₂H₂O), 259 (M⁺-C₄H₅O-HOAc), 242 (M⁺-C₄H₆O₂-HOAc), 213 and 69 (C₄H₅O). (Calc. for C₂₁H₂₄O₇: MW, 388.1520. Found: MW(MS), 388.1516).

The next substance **4a** was recrystallized from MeOH, mp 208° (0.42 g). IR bands at 2700, 1760, 1720, 1690 and 1180 cm⁻¹, ¹H NMR (60 MHz): δ 9.60 (d, J=2 Hz, H-14), 6.82 (ddbr, J=9, 8 Hz, H-1), 6.65 (dd, J=9, 1 Hz, H-8), 6.28 (d, J=3 Hz, H-13 a), 6.10 (br, H-3'), 5.85 (d, J=3 Hz, H-13 b), 5.65 (br, H-3'), 5.10 (m, H-5 and H-6), 4.50 (br, H-15), 3.80 (dd, J=9, 2 Hz, H-9), 3.18 (OMe), 1.98 (br, H-4'). The MS exhibited significant peaks at m/e 376 (M*), 358 (M*-H₂O), 347 (M*-HCO), 290 (M*-C₄H₆O₂), 273, 261, 259, 243 and 69 (C₄H₅O). (Calc. for C₂₀H₂₄O₇: C, 63.82; H, 6.43. Found: C, 63.56; H, 6.18%).

The most polar substance was identified as darutigenol (8a), yield 0.48 g, mp 168° , $[\alpha]_D-12^\circ$ (c, 1.024), reported [2] mp $168-170^\circ$, $[\alpha]_D-11^\circ$, MS m/e: 322, 305, 304, 291, 286, 273, 271, 261, 227, 187, 173, 135, 120, 109, 107, 105. (Calc. for $C_{20}H_{34}O_3$: C, 74.49; H, 10.63. Found: C, 74.32; H, 10.41%). Gummy triacetate 8b, MS m/e 448, tribenzoate 8c mp 82°, reported [2, 3] mp 83°. Degradation of 8a (0.15 g with 0.1 g sodium periodate in MeOH for 12 hr and recrystallization of the crude product from MeOH gave 0.102 g of 9, mp 118–120°, reported [2, 3] mp 115–120°, MW (MS) 290

Fractions 25–36 exhibited a single spot on TLC, and were combined and recrystallized from EtOH to give 2.6 g of darutoside (8d), mp 250°, $[\alpha]_D$ – 35°, reported [2, 3] mp 248–250°, $[\alpha]_D$ – 37°, hexaacetate mp 92–94°, reported [2] mp 91–93°. Oxidation of 0.25 g of 8d in MeOH with 0.20 g of NaIO₄ for 12 hr followed by hydrolysis of the crude product with KOH in EtOH and acidification also gave 9, mp 118–120°.

Reactions of 1b. A mixture of 0.10 g 1b, 10 ml MeOH and 0.5 ml 40% KOH was stirred for 3 hr under N₂, acidified with HOAc and extracted with CHCl₃. The washed and dried extract was evapd; the residue was purified by PLC (C₆H₆-EtOAc, 1:2) and recrystallized from EtOAc. Yield of 2a 40 mg, mp 135-140°, IR $\nu_{\rm max}$ cm⁻¹: 3500, 1770, 1690 and 1100; UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 230 (ε 9600), ¹H NMR (60 MHz): 89.50 (d, J = 2 Hz, H-14), 6.80 (dd, J = 9, 8 Hz, H-1), 5.0 (m, H-5 and H-6) 3.5-3.95 (H-8, H-9, H-13), 3.40 and 3.25 (OMe), 1.98 (br, H-15); MS m/e: 324 (M⁺), 306, 295, 292, 277, 274, 245, 242, 213. (Calc. for C₁₇H₂₄O₆: C, 62.95; H, 7.46. Found: C, 62.81; H, 7.24%).

Acetylation (Ac₂O-Py) of 20 mg **2a** gave 20 mg **2b**, mp 170° (from MeOH). IR bands at 1770, 1720, 1690 and 1160 cm⁻¹; ¹H NMR: δ 9.45 (d, J = 2 Hz, H-14), 6.70 (dd, J = 9, 8 Hz, H-1), 6.20 (dbr, J = 9, 2 Hz, H-8), 5(m, H-5 and H-6), 3.6-3.8 (H-9 and H-13), 3.35 and 3.15 (OMe), 2.15 (Ac) and 1.96 (dbr, H-15); MS m/e: 366 (M⁺), 337, 334, 324, 306, 277, 274. (Calc. for C₁₉H₂₆O₇: C, 62.28; H, 7.15. Found: C, 62.12; H, 6.95%).

Oxidation of 2a. A soln of 30 mg 2a in 1 ml DMSO and 1 ml Ac₂O was kept overnight at room temp, diluted with H_2O and extracted with CHCl₃. The washed and dried extract was evapd and the residue purified by PLC to give 20 mg 3, mp 195-200° after 4 recrystallizations from MeOH. IR ν_{max} cm⁻¹: 2800, 1780, 1720 and 1690; UV strong end absorption (ε_{230} 12 000); ¹H NMR (270 MHz): δ 9.50 (H-14), 7.01 (ddbr, J = 9, 8 Hz, H-1), 5.16 (d, J = 10 Hz, H-5),

4.64 (t, J = 10 Hz, H-6), 3.87 (dd, 9.5, 1 Hz) and 3.44 (dd, J = 9.5, 2 Hz, H-13), 3.87 (H-9), 3.37 and 3.33 (OMe) superimposed on two proton multiplet of H-7 and H-11, 2.72 (m, H-2a), 2.49 (m, H-2b and H-3a), 2.22 (t, J = 13 Hz, H-3b), 1.90 (br, H-15); MS m/e: 322 (M^+), 294, 262, 251, 249, 231. (Calc. for $C_{17}H_{22}O_6$: MW, 322.1415. Found: MW(MS), 322.1414).

Reactions of 4a. Acetylation of 30 mg 4a with Ac_2O-Py gave 30 mg 4b as a gum which had IR bands at 2800, 1770, 1720, 1690 a d 1180 cm⁻¹; 1H NMR (60 MHz): δ 9.50 (d, J=2 Hz, H-14), 6.80 (dd, J=9, 8 Hz, H-1), 6.60 (dd, J=9, 1 Hz, H-8), 6.26 and 5.88 (d, J=3 Hz, H-13), 6.10 and 5.60 (br, H-3'), 5.20 (m, H-5 and H-6), 4.85 (br, H-15), 3.80 (dd, J=9, 2 Hz, H-9), 3.15 (OMe), 2.10 (Ac) and 1.98 (br, H-4'); MS m/e: 418 (M⁺), 389, 387, 353, 349, 333, 289, 272, 243, 211 and 69.

A soln of 0.1 g 4a in 10 ml MeOH was hydrolysed with 40% aq. KOH as described for 1b. The product (2c) was recrystallized from ETOAc and melted at 90-92°, mmp undepressed with material fron hydrolysis of 1a [1]; 1H NMR and MS identical. Oxidation of 25 mg 2c with MnO₂ as previously described [1] gave dialdehyde 6a as a gum whose ¹H NMR spectrum was not described earlier; signals appeared at δ 10.17 (br, H-15), 9.47 (d, J = 2 Hz, H-14), 6.85 (dd, J = 9, 8 Hz, H-1), 5.90 d (br, J = 9 Hz, H-5), 4.85 (dbr,J = 9 Hz, H-6), 3.38 and 3.15 (OMe). Oxidation of 20 mg 6a with DMSO-Ac₂O as described for 2a gave 15 mg 6b as a gum which had IR bands at 2820, 2620, 1780, 1720, 1680, 1625, 1100, 1050 and 1000 cm⁻¹; ¹H NMR; δ 10.23 (H-15), 9.66 (H-14), 7.10 (dd, J = 9, 8 Hz, H-1), 6.40 (d, J = 10 Hz, H-5), 5.45 (dd, J = 10, 9 Hz, H-6), 3.70 (H-9), 3.40 and 3.35 (OMe); MS m/e: 336 (M⁺), 308, 276, 263 and 245. (Calc. for $C_{17}H_{20}O_7$: MW, 336.1208. Found: MW (MS), 336.1204).

A mixture of 0.04 g **4b**, 2 ml Ac_2O and 5.5 ml BF_3 -etherate was left overnight at room temp. poured into cold $NaHCO_3$ soln and extracted with EtOAc. The washed and dried extract was evapd and the residue purified by PLC (C_6H_6 -EtOAc, 1:1) to give 25 mg as a gum which had IR bands at 1770, 1720 and 1160 cm⁻¹; 1H NMR (60 MHz): δ 7.22 (H-14), 6.38 and 5.85 (d, J=3 Hz, H-13), 6.1 (overlapping signals of H-1, H-8 and H-3'), 5.65 (br, H-3'), 5.28 (m, H-5 and H-6), 4.90 (H-15), 3.90 (d, J=9 Hz, H-9), 3.15 (OMe), 2.20, 2.15, 2.15 (Ac), 2.0 (br, H-4'); MS m/e: 520 (m^+), 489, 461, 434, 387, 359, 349, 333, 289, 273, 272, 241, 213, 212, 211 and 69.

Acknowledgement—Work at the Florida State University was supported by a grant (CA-13121) from the U.S. Public Health Service through the National Cancer Institute.

REFERENCES

- Barua, R. N., Sharma, R. P., Madhusudanan, K. P., Thyagarajan, G., Herz, W. and Murari, R. (1979) Phytochemistry 18, 991.
- Pudles, J., Diara, A. and Lederer, E. (1959) Bull. Soc. Chim. Fr. 693.
- Diara, A., Asselineau, C. and Lederer, E. (1960) Bull. Soc. Chim. Fr. 3057.
- Herz, W. and Kalyanaraman, P. S. (1975) J. Org. Chim. 40, 3486.
- Wenkert, E., Ceccherelli, P., Raju, M. S., Polonsky, J. and Tingoli, M. (1979) J. Org. Chem. 44, 146.